

European Space Agency

Ka-band Surface-Mountable Pseudo-elliptic Filter in Multilayer Micromachined Technology for On-board Communication Systems

P. Farinelli¹, L. Pelliccia¹, B. Margesin², R. Sorrentino³

¹ RF-Microtech, Italy
² FBK – Fondazione Bruno Kessler, Italy
⁴ University of Perugia, Italy

Motivation

- 4th-order Ka-band filter in multilayer micromachined technology
 - Design
 - Manufacturing
 - Experimental results
- Conclusions

Motivation

Satellite market demands for innovative miniaturized technologies to reduce the dimensions, weight and cost of satellite equipment

Filters, Diplexers (and multiplexer) are key elements in modern multiband and multiservice telecommunications systems

Conventional high Q filters in Ka band and beyond are **based on coaxial TEM mode resonators** allowing for high unloaded Q (>1000). However, they are bulky, heavy in weight and the integration with monolithic circuits is difficult.

Process & RF design definition

Process Definition

Two Wafer SOI (Silicon On Insulator) Deep silicon etching Etching angle: 3 degrees Gold plating deposition (2µm) Tolerances: ± 5µm

Common input

Slide 4

Micromachining Technology for RF Filters *RFutech*

Based on resonant cavities and thin membranes that are:

- etched in Silicon/Silicon On Insulator wafers
- gold-plated

stacked in multilayer structures

- High miniaturization
- High Q
- Small footprint (multilayer technology)
- Small weight
- High integration (Surface Mountable Devices)
- Low manufacturing tolerances

Ka-band $\lambda/2$ TEM Mode Cavity

Micromachined cavities are generally realized as TE₁₀₁ mode cavities

Number of geometrical parameters affecting the resonant frequency is minimized
2) Footprint reduction ~ 50%, Q decrease < 25%

12-Oct-2016 SPCD – RF Microtech - New Developments

RFutech

Ka-band $\lambda/2$ TEM Mode Cavity

Resonators are realized as short-circuited membranes etched in the Silicon wafers by Deep Reactive Ione Etching, gold electroplated and stacked by thermo-compressive bonding

¹²⁻Oct-2016 SPCD – RF Microtech - New Developments

RFytech

4th-order Filter: RF Design

RFµtech

4th-order Filter: Simulated performance

Centre Frequency: 30GHz Fract. Bandwidth: 1.8% Insertion Loss < 2.5 dB Q ~ 600

RFutech

Filter Manufactured

Single resonant cavities

4th order Kaband Filter

conductive vias

wafer details

Inspections on Membrane flatness RFutech

• The final membranes are almost flat (buckling < 3μ m).

Dimensional Inspections

RFµtech

All membranes were longer than designed, because of a non-optimized etching time that caused an over-etching of the cavity side walls (about 60-80 μ m for each side). This problem caused:

- longer λ/2 membranes → down-shift of the filter centre frequency (about 600-900 MHz)
- 2. Larger couplings between cavities that \rightarrow higher RL

In the second run this error will be compensated for by undersizing the masks

RF Measurements

Comparison among measurements, circuital (AWR) and HFSS back simulations, accounting for the actual cavity dimensions

Frequency: 29.4 GHz Fract. Bandwidth: 2.6' Insertion Loss < 3 dB Simulated Q ~ 500

4th order Ka-

band Filters

Frequency down-shift by about 600MHz and poor S11 due to the over-etching problem

12-Oct-2016 SPCD – RF Microtech - New Developments

RFytech

Performance repeatability

Comparison

Good agreement between measured performance of #8 samples and Montecarlo analysis, accounting for manufacturing and assembly tolerances

12-Oct-2016 SPCD – RF Microtech - New Developments

RFytech

Thermal Shocks

RFµtech

DEVICES UNDER TEST: #10 single cavities #10 4th pole filters

TEST CONDITIONs #10 cycles -30°/100° MIL –STD – 202G ; Method 107 G ,test condition A-1

No failure or change in S parameters for the #20 samples

Mechanical Shocks

#5 4th order filters were glued on a test board and stressed with mechanical shocks

for the #5 samples

RFutech

Surface Mounting

- The filter will soldered on a test board to measure the performance of the integrated device.
- The test board has been modeled and design to ensure good matching and minimize the interconnection loss.

12-Oct-2016 SPCD – RF Microtech - New Developments

RFutech

Surface Mounting

Measurements and thermal shocks are on-going

- A new micromachined resonator has been proposed for Ka-band filters for space applications
- 4th order micromachined surface mountable filters have been designed, fabricated and tested
- Volume occupation is less than 12x9x3mm, weight is 0.75g
- Unloaded Q around 500 and good reproducibility were demonstrated
- Q up to 1000 is expected by increasing the cavity height, i.e. by using thicker wafers
- Good robustness to both thermal and mechanical shocks
- The filter has been integrated in a test board by using standard surface mounting techniques.

ARTES 5.1 project "MIGNON"

"MIcromachined filters in multi-layer technoloGy for satellite ON-board communication systems"

Special thanks to Dr Francois Deborgies and Dr Christoph Ernst from ESA/ESTEC for their support and suggestions.

Thank you for your kind

12-Oct-2016 SPCD – RF Microt

